
B d B ild i 4BodyBuilder session 4
Managing axes and intro to macros

Course Objectives

1. How to visualize the axes of a segment in the BodyBuilder 3D workspace

• Virtual point review

• Adding the appropriate code to the .MOD and .MKR files

2. The Local to Global coordinate system switch

• Introcudtion

• Why switch from Local to Global and vice versa?

2. Macros

How to visualize axes of a
i h ksegment in the workspace

Review – Virtual Points

Any location in space can be specified as a virtual point.

1. Here are some Examples of how to create a virtual point:
E l Vi lMk (MKR1 MKR2)/2• Example: VirtualMkr = (MKR1+MKR2)/2

• Specifies the midpoint between markers: MKR1 and MKR2

• Example: VirtualMkr = SegmentOrigin + 100*Segment(1)

• Begins at the origin point of a segment (“SegmentOrigin”) and creates a markerBegins at the origin point of a segment (SegmentOrigin) and creates a marker
100 mm from that point in the direction of the first axes (X) of the Segment.

2. Any virtual point can then be OUTPUT to the .c3d file and viewed in the y p
workspace

• OUPUT(VirtualMkr)

3. NOTE – By outputting a Virtual marker, you will be able to view it in the
BodyBuilder workspace but you will not be able to graph it or visualize sticks
between it and any other marker until it is added to the .MKR file.

Visualizing Axes – Using Virtual Points in .MOD file

It is a good general practice to visualize the axes you create with the Segment
definitions to ensure they have been created as intended.

This is done by creating four virtual points

1. The first virtual point will be created at the Origin of the segment

2. The second virtual point will be created at a distance x from the segment origin
along the direction of the segment’s X axis

3. The third virtual point will be created at a distance y from the segment origin
along the direction of the segment’s Y axis

4. The fourth virtual point will be created at a distance z from the segment origin
along the direction of the segment’s Z axis

4

1

2

3

Visualizing Axes – Using Virtual Points in .MOD file

Segment=[Origin, A-B, C-B, xyz]
ORIGINSegment=Origin
AXISXSegment= ORIGINSegment +(1(Segment)*100)
AXISYS t ORIGINS t (2(S t)*100)AXISYSegment= ORIGINSegment +(2(Segment)*100)
AXISZSegment= ORIGINSegment +(3(Segment)*100)
OUTPUT(ORIGINSegment,AXISXSegment,AXISYSegment,AXISZSegment)

The above translates into:

ORIGINSegment is a virtual point coincident with the point Origin, used in the segment definition
The point Origin could be a real marker or a previously created virtual point

AXISXSegment is a virtual point placed at 100mm along the direction of the first axis of the
segment (X axis) from the ORIGINSegment point

*NOTE - the first axis of a segment is always the X axis no matter what order is chosen in the segment definitionNOTE - the first axis of a segment is always the X axis no matter what order is chosen in the segment definition.

AXISYSegment is a virtual point placed at 100mm along the direction of the second axis of the
segment (Y axis) from the ORIGINSegment point

AXISZSegment is a virtual point placed at 100mm along the direction of the third axis of the
segment (Z axis) from the ORIGINSegment point

Visualizing Axes – Adding points to .MKR file

Below is an example of how to run axes visualization code for a specificBelow is an example of how to run axes visualization code for a specific
segment:

SACR = (LPSI + RPSI)/2
OUTPUT (SACR)

PelvisO = (LASI +RASI)/2
OUTPUT (PelvisO)OUTPUT (PelvisO)

Pelvis = [PelvisO, LASI - RASI, PelvisO - SACR, yzx]

ORIGINPelvis=PelvisO
AXISXP l i ORIGINP l i +(1(P l i)*100)AXISXPelvis= ORIGINPelvis +(1(Pelvis)*100)
AXISYPelvis= ORIGINPelvis +(2(Pelvis)*100)
AXISZPelvis= ORIGINPelvis +(3(Pelvis)*100)
OUTPUT(ORIGINPelvis,AXISXPelvis,AXISYPelvis,AXISZPelvis)

Once the code fragment above gets executed, the newly defined virtual points are
OUTPUT to the .C3D file, and shown in the BodyBuilder 3D workspace. They appear , y p y pp
as single markers, not connected together:

Visualizing Axes – Adding points to .MKR file
To see the markers being connected together, we have to update the .MKR

fil f llfile as follows:

1. Declare the points in the section we want them to appear
2. Connect the points using the comma (‘,’) operator

Reassign the modifiedReassign the modified
.MKR to the subject
using the ‘Subject
Settings’ dialogue

[Segment Visualisation]
ORIGINPelvis
AXISXPelvis
AXISYPelvis
AXISZPelvis

ORIGINPelvis,AXISXPelvis
ORIGINPelvis,AXISYPelvis
ORIGINPelvis,AXISZPelvis

Visualizing Axes – Example

Lets go to BodyBuilder and practice adding this code to our example model and
see what it looks like.

Axes switch from Local to
global coordinate systems

What is a Global to Local switch?

Global point – A point that is expressed in the global Vicon coordinate system,
specified by the position of the calibration object during the static step of the system
calibration procedurep

Local Point – A point that is expressed in a local segment coordinate system,
specified by the segment definition in the .MOD file.

Note - Any point can be defined by the global or any local coordinate system

{PxL, PyL, PzL}
{PxG, PyG, PzG}
{ , y , }

Global

Why switch from Local to Global and vice versa?

EXAMPLE
Markers placed on prominent bony landmarks (i.e. lateral femoral condyle) suffer from skin motion

artefacts.

Some people prefer to track a body segment using tracking markers placed in any position on theSome people prefer to track a body segment using tracking markers placed in any position on the
segment. This implies that the most relevant anatomical points need to be ‘calibrated’ with
respect to the tracking markers during the static trial.

Global To Local:
1. Create a technical coordinate system rigidly associated with the segment using the

tracking markers
2 Calculate the local coordinates of the marker on the anatomical point with respect2. Calculate the local coordinates of the marker on the anatomical point with respect

to the technical coordinate system defined at step #1.
3. Store the local coordinates in the .MP file

In the same way, once the marker placed on the anatomical points gets removed, its global position
needs to be reconstructed starting from the position of the tracking markers.

Local To Global:Local To Global:
4. Create a technical coordinate system rigidly associated with the segment using the

tracking markers (identical segment definition as in Step #1.)
5. Calculate the global position of the point whose local coordinates are stored in the .MP

file

Why switch from Local to Global and vice versa?

Global to Local
Th Gl b l L l f i h d h d k h• The Global to Local transformation comes handy when we need to know the

position of a marker with respect to a ‘technical’ coordinate system rigidly
associated to a body segment

Example
A Medial Epicondyle marker is placed on the elbow during the static trial and then it gets removed for
dynamic trials (medial markers do not have a good visibility and are easily knocked off during motion).

Before removing the marker we need to know its local coordinates with respect to a coordinate system
defined using other markers attached to the same segment of the medial epicondyle marker (due to the
Rigid Body Hypothesis, it is assumed that all the markers attached to the same segment do not move
relatively to each other). The local coordinates of the marker are then saved to the .MP file

{PxLoc, PyLoc, PzLoc} .MP file

P

Why switch from Local to Global and vice versa?

Local to Global

The Local to Global transformation is needed to recreate the global position of a
marker previously ‘calibrated’ with respect to a technical coordinate system during
the static trial and successively removed for dynamic trials. The local coordinates of
the marker are retrieved from the .MP file

MP file.MP file

{PxLoc, PyLoc, PzLoc}

P

Global/Local switch syntax

C ti FROM %L lP i t i S tA TO Gl b lP i t• Converting FROM %LocalPoint in SegmentA, TO GlobalPoint

• Use of operator ‘*’
• GlobalPoint = %LocalPoint*SegmentA• GlobalPoint = %LocalPoint SegmentA

• Converting FROM GlobalPoint, TO %LocalPoint in SegmentA

• Use of operator ‘/’
• %LocalPoint = GlobalPoint / SegmentA

NOTE – the symbols “*” and “/” do not mean multiply and divide when used y p y
this way

NOTE – The symbol “%” does not change the meaning of the expression. It is y g g
only used to flag a parameter as being a value in a local reference frame

Macros

What are Macros?

In order to make scripts shorter, easier to read, and more reliable, BodyLanguage
supports the definition and calling of macros.

A macro works like a subroutine in a compiled program. Once defined, a macro can
be called as many times as required, thereby eliminating repetitions of text.

In order to make a macro applicable in different situations, it can be defined using a
set of parameters. These parameters are listed at the start of the macro definition.
When the macro is executed, the parameters are replaced by a matching set of real p p y g
variable names.
by
a matching set of real variable names.

How to use a Macro

1. Define the Macro at the beginning of your script
• Signal the start of a macro with the statement “DEFINE MACRO” or

“MACRO”
N hi li h f h d h i h• Next to this statement, list the name of the macro and then in parentheses,
any parameter used in the macro code.

2 B l t th l l ti t b h th i ll d i th2. Below, create the calculations to be run when the macro is called, using the
parameters.

3 Close the macro definition with the statement ENDMACRO3. Close the macro definition with the statement ENDMACRO

MACRO mac_name(D1, D2, D3)
<code using variables D1, D2 and D3>g
<code using variables D1, D2 and D3>
<code using variables D1, D2 and D3>

ENDMACRO

in Macros – The Text Concatenation Operator

The “#” symbol is known as the ‘Text Concatenation Operator’ and is used to create

Macro AXISVISUALISATION(Segment)

output variable names in the macro definitions

(g)
ORIGIN#Segment = 0(Segment)
AXISX#Segment = {100,0,0}*Segment
AXISY#Segment = {0,100,0}*Segment
AXISZ#Segment = {0,0,100}*Segment

OUTPUT (ORIGIN#Segment,AXISX#Segment,AXISY#Segment,AXISZ#Segment)
Endmacro

When the macro above is invoked in the
code using the following instruction:code using the following instruction:
AXISVISUALISATION(head)

the points created will have thethe points created will have the
following names:

ORIGINhead
AXISXhead

Note:
ORIGINhead comes from ORIGIN#Segment. The
‘Segment’ part gets then replaced with the realAXISXhead

AXISYhead
AXISZhead

Segment part gets then replaced with the real
name of the input parameter of the macro, i.e.
‘head’
The same applies to the other output variables

The Replace Macro

Lets call this macro for the Pelvis which is a rigid segment with 4 points

REPLACE4(LASI, RASI, LPSI, RPSI)
OUTPUT(LASI,RASI,LPSI,RPSI)

I use the output command to make sure I see the filled in points in the .C3D file

Continuing our BodyBuilder example code

Lets go to BodyBuilder and add these macros and see how this grows our codeLets go to BodyBuilder and add these macros and see how this grows our code

Assignment 4

1. Open your training.mod file

2. Add code to visualize all of the segment axes you created in Assignment 2.
1 Fi h d i f f h i h i h1. First try to put the code in for one of the segments without using the macro
2. For the rest of the segments, use the Axes Visualization macro

3 Add th R l 4 t d3. Add the Replace4 macro to your code.

4. Open the example walking trial. Create a number of gaps in the pelvis markers
using the Edit | Delete Points toolusing the Edit | Delete Points tool

5. Run the model to allow the Replace4 to fill in all of the gaps in the Pelvis
markersmarkers.

